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Pediatric septic shock remains 
a major public health prob-
lem despite the development 
of effective antibiotics, vac-

cines, intensive care unit-based support 
modalities, and standardized treatment 
guidelines (1–5). The recognition of sep-
tic shock as a persistent challenge in the 
pediatric intensive care unit has led sev-
eral investigators to study this syndrome 
using genetic and genomic approaches 
(6–8). This review will focus on the two 
areas of genomics most widely applied 
thus far to the field of pediatric sep-
tic shock: gene association studies and 
genome-wide expression profiling. The 
concluding section will briefly speculate 
on the potential link between epigenetics 
and long-term outcomes.

Gene Association Studies

Death from infection is reported to 
have a stronger heritable component 
than death from cancer or cardiovascular 
disease (9). While this observation did not 
identify the causative genetic alterations 
and involves a relatively noncontempo-
rary patient cohort, the study nonethe-
less provides compelling evidence that 
genetics play an important role in both 
susceptibility and response to infection. 
The existence of a singular “sepsis gene” 
is not biologically plausible. More plau-
sible is the existence of genetic variations 
within multiple candidate genes that af-
fect how the host responds to an infec-
tious challenge.

The majority of gene association stud-
ies involving pediatric sepsis have focused 
on polymorphisms: the regular occur-
rence (>1%) of two or more alleles at a 
particular chromosome location. The 
most frequent type of polymorphism is 
called a single nucleotide polymorphism 
(SNP): a substitution, deletion, or inser-
tion of a single nucleotide occurring in 
approximately one per 1000 base pairs 
of human DNA. SNPs can result in an al-
tered protein, a change in the amount of 
normal protein expression, or no discern-
able change in protein function.

Many SNPs fall into the latter category 
because they occur in noncoding regions, 

or they are synonymous SNPs that do not 
lead to an amino acid change. These SNPs 
may be nonetheless worthy of study be-
cause they may be coinherited along with 
causal variants through linkage disequi-
librium, which refers to the nonrandom 
association of alleles at two or more chro-
mosome locations. Related to the concept 
of linkage disequilibrium is that of hap-
lotype, which refers to a set of multiple 
SNPs on a single chromosome that are 
typically coinherited. These haplotype 
“blocks” can be identified by haplotype 
tag SNPs, and the International HapMap 
project is developing a haplotype map of 
the entire human genome as means to 
more effectively conduct genetic associa-
tion studies (10).

A selected group of gene association 
studies in pediatric sepsis will be dis-
cussed below. Several reviews exist on the 
topic involving both adults and children, 
which also discuss methodological issues 
and limitations (6, 11–15). Notably, there 
are rigorous criteria dictating the quality 
of an ideal gene association study (16–20). 
Unfortunately, many gene association 
studies in critical care medicine do not 
meet this level of rigor (19).

Plasminogen Activator Inhibitor-1 
(PAI-1). PAI-1 is the principal inhibi-
tor of tissue plasminogen activator and 
urokinase (21, 22). As such, PAI-1 can be 
viewed as a procoagulant factor in that it 
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inhibits fibrinolysis. The PAI-1 promoter 
contains an insertion/deletion polymor-
phism at –675 base pairs: 5G/4G (23). In 
vitro, the 4G allele produces six times the 
amount of PAI-1 mRNA compared to the 
5G allele, and individuals homozygous for 
the 4G allele produce greater amounts of 
PAI-1 compared to individuals homozy-
gous for the 5G allele (23).

Microvascular thrombosis is a com-
mon pathologic component of sepsis, 
particularly in meningococcemia (24-27). 
Accordingly, the PAI-1 4G/5G polymor-
phism has been a focus of investigation 
in meningococcal sepsis. Hermans et al 
(28) first demonstrated that children with 
meningococcemia and the 4G/4G geno-
type produce higher concentrations of 
systemic PAI-1 and have worse outcomes 
compared to children with the 4G/5G or 
5G/5G genotype. This link between the 
4G/4G genotype and severity of menin-
gococcal disease has been independently 
corroborated by several investigators (29-
31), and a recent meta-analysis provides 
further confirmation that the 4G/4G al-
lele is associated with mortality (32).

The studies linking the PAI-1 4G/5G 
insertion/deletion polymorphism and 
meningococcal sepsis provide relevant 
examples of well-conducted gene associa-
tion studies (16–20). The association be-
tween the gene and the disease has a high 
level of biological plausibility. The allele 
(4G) affects the gene product in a physi-
ologically meaningful manner. Cases are 
clearly defined and represent a spectrum 
of disease severity. The initial study has 
been independently replicated. Thus, 
the impact of the 4G allele on outcome 
in meningococcal disease is perhaps the 
most well-founded association between 
genetic variation and outcome in pediat-
ric septic shock. However, this “genomic 
knowledge” has yet to be unambiguously 
translated to the bedside in the form of 
a novel therapy. This unfortunate cir-
cumstance reflects the complexities of 
coagulation balance in septic shock, as 
demonstrated by the inability of activated 
protein-C therapy to improve outcome in 
a heterogeneous cohort of children with 
septic shock (33).

Toll-Like Receptors (TLRs) and Related 
Signaling Molecules. TLRs are a family of 
pathogen-recognition receptors that pro-
vide a major mechanism for cells of the 
innate immune system to recognize and 
respond to pathogens (34). TLR4 is re-
sponsible for recognizing lipopolysaccha-
ride from Gram-negative bacteria, while 
TLR2 is responsible for recognizing cell 

wall components of Gram-positive bacte-
ria (lipoteichoic acid and peptidoglycan).

The coding region of the human TLR2 
gene contains a nonsynonymous SNP 
leading to a substitution of arginine for 
glutamine at amino acid 753 (Arg753Gln). 
Lorenz et al (35) first reported this poly-
morphism and that the Arg753Gln poly-
morphism renders TLR2 less responsive 
to components of Gram-positive bacteria. 
Lorenz et al (35) also detected this poly-
morphism in two of 91 patients with septic 
shock, both of whom had staphylococcal 
infections. Subsequent studies, however, 
have not been able to confirm a strong 
association between the Arg753Gln allele 
and severity of Gram-positive infection in 
adults (36, 37). Studies in pediatric popu-
lations indicate an association between 
the Arg753Gln polymorphism and risk 
of recurrent infection (38), urinary tract 
infection (39), premature birth (40), and 
acute rheumatic fever (41). Other TLR2 
SNPs have been described that may war-
rant further investigation (42, 43).

TLR4 mutations exist in mice that lead 
to abnormal responses to endotoxin and 
increase susceptibility to Gram-negative 
infections (44–47). The human TLR4 
gene contains two mutations (Asp299Gly 
and Thr399Ile) that lead to hyporespon-
siveness when human volunteers are 
challenged with inhaled endotoxin (48, 
49). Conversely, a study involving periph-
eral blood mononuclear cells from chil-
dren, showed no differential response to 
endotoxin or respiratory syncytial in as-
sociation with these two mutations (50). 
Nonetheless, studies comparing adults 
with septic shock and healthy blood donor 
controls revealed the TLR4 Asp299Gly al-
lele exclusively in the patients with septic 
shock, and also found that patients with 
the Asp299Gly/Thr399Ile alleles had a 
higher prevalence of Gram-negative in-
fections (51, 52). In one report involving 
children with meningococcal disease, a 
heterozygous Asp299Gly genotype was 
associated with increased mortality (53), 
while two other reports have not been 
able corroborate this association (54, 55). 
Smirnova et al (56) have reported no link 
between “common” TLR4 variants and 
meningococcal disease, but have provided 
evidence that “rare” TLR4 coding vari-
ants are substantially overrepresented 
in patients with meningococcal disease. 
Finally, TLR4 polymorphisms have been 
linked with susceptibility to malaria in 
children (57).

Despite the biological importance of 
TLRs (a focus of the most recent Nobel 

Prize in Medicine), an absolute and unam-
biguous link between TLR genetic variants 
and human septic shock remains relative-
ly elusive. Accordingly, investigators have 
recently focused on adapter proteins con-
stituting the downstream signaling appa-
ratus of TLRs. Polymorphisms of one such 
adapter protein, Mal (aka TIRAP), have 
been linked to invasive pneumococcal dis-
ease (58), an evolution-related increased 
resistance to infection (59), increased risk 
of infection in critically ill adults (60), and 
susceptibility to invasive Haemophilus in-
fluenzae infection in immunized children 
(61). Given the existence of several other 
adapter proteins that contribute to TLR 
signaling (34), it would be expected that 
several other gene association studies, fo-
cused on these adapter protein genes, are 
forthcoming.

Tumor Necrosis Factor-. Tumor ne-
crosis factor-a (TNFa) is recognized as a 
primary mediator in the pathophysiology 
of sepsis and septic shock (62-64), and 
has well-described polymorphisms (65). A 
substitution polymorphism of the TNF 
promoter region involves a guanine (TNF1 
allele) or an adenine (TNF2 allele) at –308 
base pairs (66), and the TNF2 allele corre-
lates with increased production of TNF 
(67-69). The TNF2 allele has been associ-
ated with increased susceptibility to septic 
shock and mortality from septic shock in 
adults (70). However, this association has 
not been consistently observed (71, 72), 
and a recent meta-analysis involving 25 
selected articles concluded that the TNF2 
allele is associated with the development 
of sepsis, but not with sepsis mortality 
(73). In children with meningococcemia, 
Nadel et al (74) reported an association 
between the TNF2 allele and illness sever-
ity, whereas Read et al (75) reported an 
association between the TNF2 allele and 
susceptibility to meningococcemia in a 
mixed population of adults and children. 
A small study involving children with het-
erogeneous sepsis etiologies suggested 
that the TNF2 allele is more common in 
patients with septic shock compared to 
normal controls, but could not detect an 
association between the TNF2 allele and 
mortality.

A related polymorphism involves 
lymphotoxin-, a member of the TNF su-
perfamily (TNF-) (74). The first intron of 
the lymphotoxin- gene contains a restric-
tion length polymorphism: the TNFB1 
and TNFB2 alleles. Adults with septic 
shock, and homozygous for the TNFB2 al-
lele, are characterized by higher systemic 
levels of TNF and a higher mortality rate 
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(76). In bacteremic children, the TNFB2 
allele was also demonstrated to be associ-
ated with higher systemic levels of TNF 
and higher mortality (77).

Summary and Perspective. Several 
other polymorphisms have been studied 
in pediatric sepsis, and a selected group 
is summarized in a Table 1. Presently, no 
gene association study has directly im-
pacted care in the pediatric intensive care 
unit. Nonetheless, the concept of genetics 
influencing pediatric sepsis remains valid. 
To translate this concept to the bedside, 
large-scale collaborations will need to be 
developed, positive association studies will 
need to be validated, and the field should 

consider focusing on functional polymor-
phisms for which there potentially exist 
reasonable therapeutic options.

Expression Profiling Studies

Expression profiling involves the use 
of microarray technology to simulta-
neously measure mRNA abundance of 
thousands of transcripts from biologi-
cal specimens (78, 79). The approach is 
said to be “discovery oriented” in that 
no a priori assumptions are made re-
garding the relevance of any particular 
genes to the biological process of in-
terest. This relatively unbiased, whole-
genome approach is also referred to 

as “transcriptomics,” and is generally 
hypothesis generating, rather than hy-
pothesis driven (Fig. 1). Several whole-
genome expression profiling studies 
have been conducted in human volun-
teers challenged with endotoxin and 
adults with sepsis (80-91), and excellent 
reviews have detailed the technical as-
pects, caveats, and limitations of expres-
sion profiling (78, 79). This section will 
review the analogous studies involving 
children, with a focus on leveraging ex-
pression data for the discovery of novel 
pathways and therapeutic targets, bio-
marker discovery, and gene expression-
based subclassification.

Table 1.  Selected gene-association studies in pediatric sepsis and septic shock

Reference Gene/Polymorphism Main Findings

Read et al [143], Brouwer  
et al [32]

Polymorphisms of IL-1B (–511) and IL-
1RN (+2018).

IL-1B (−511) allele associated with increased survival 
in meningococcemia. Combination of the IL-1B 
(–511) and IL-1RN (+2018) alleles associated with 
decreased survival.

Endler et al [144], Brouwer 
et al [32]

Multiple polymorphisms for the IL-1 
locus.

The IL-1RN (+2018) polymorphism was associated with 
risk of meningococcal disease and with its outcome.

Michalek et al [145] IL-6 polymorphisms (G-174C and 
G-572C).

Both polymorphisms could be predictors of risk of 
development and/or predictors of sepsis severity.

Lehrnbecher et al [146] IL-6 G-174C polymorphism Population of children with acute myeloid leukemia.  
G allele associated with risk of infection with Gram-
negative bacteria.

Artifoni et al [147] IL-8 −251 A>T polymorphism A allele associated with pyelonephritis.
Binder et al [148] Polymorphisms of the protein C promoter: 

C-1654T and A-1641G
Carriers of the CG allele had an increased risk of 

developing meningococcal sepsis.
Multiple [149-153] Fc gamma receptor polymorphisms Increased risk of meningococcal disease and increased 

illness severity.
Hibberd et al [154] MBL polymorphisms Increased susceptibility to meningococcal disease.
Summerfield et al [155] MBL polymorphisms Increased susceptibility to severe infections.
Koch et al [156] MBL polymorphisms Increased risk of acute respiratory infections in children  

6 to 17 months of age.
Michalek et al [157] Bactericidal permeability increasing 

protein polymorphisms
Increased risk of Gram-negative sepsis and increased risk 

of death.
El Saleeby et al [158] Surfactant protein A2 polymorphisms Increased illness severity in infants with respiratory 

syncytial virus infection.
Dahmer et al [159] Surfactant protein B polymorphisms Increased severity of acute lung injury after community 

acquired pneumonia in African-American children.
Agbeko et al [160] Functional polymorphisms of the 

complement activation cascade.
Homozygosity for the complement factor H Y402H 

polymorphism carries a decreased risk of sepsis.
Haralambous et al [161] Complement factor H polymorphisms Increased risk of invasive meningococcal disease, in 

association with increased serum factor H levels and 
reduced bactericidal activity against meningococcus.

Davila et al [162]
Harding et al [163] Insertion/deletion polymorphism of 

angiotensin converting enzyme.
DD genotype associated with increased illness severity in 

meningococcal disease.
Cogulu et al [164] Angiotensin-converting enzyme insertion/

deletion polymorphism.
DD genotype associated with decreased risk of sepsis.

Tekin et al [165] Nucleotide-binding oligomerization 
domain-containing protein 2 receptor 
(pathogen recognition receptor) 
polymorphism.

Gene variants of the Nucleotide-binding oligomerization 
domain-containing protein 2 receptor associated with 
increased risk of sepsis and increased illness severity.

Khor et al [166] Cytokine-inducible Src homology 2 
domain protein polymorphisms: a 
suppressor of cytokine signaling.

Cytokine-inducible Src homology 2 domain protein 
variants are associated with increased risk of various 
types of infections in a mixed population of adults 
and children. Over 8,000 individuals sampled.

IL, interleukin; IL-1RN, IL-1 receptor antagonist; MBL, mannose binding lectin.
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Discovery of Novel Pathways and 
Therapeutic Targets. The ability to in-
terrogate the entire genome provides an 
opportunity to discover previously unrec-
ognized targets and pathways relevant to 
sepsis biology. For example, Pathan et al 
(92) have taken this approach to address 
the phenomenon of myocardial dysfunc-
tion in meningococcal sepsis. Using a 
combination of expression profiling and 
in vitro approaches, these investigators 
identified interleukin (IL)-6 as a major 
contributor to myocardial depression in 
meningococcal sepsis.

Multiple expression profiling studies 
in children with septic shock have docu-
mented early and persistent repression of 
gene programs directly related to, or de-
pendent on, zinc homeostasis, as well as 
low serum zinc concentrations (93–97). 
Since normal zinc homeostasis is criti-
cal for normal immune function (98), 
these observations raise the possibility 
of zinc supplementation as a potential 
therapeutic strategy for sepsis (99–101). 
Independent of the pediatric studies, 
Knoell et al (102, 103) demonstrated that 
zinc supplementation is a beneficial strat-
egy in experimental sepsis. Additional 
studies by Knoell et al (104) corroborated 
decreased plasma zinc concentrations in 
patients with sepsis, and a correlation 
between low plasma zinc concentrations 
and higher illness severity. These same in-
vestigators have also reported that plasma 
zinc concentrations correlate inversely 
with monocyte expression of the zinc 
transporter gene SLC39A8 (104, 105), and 
expression profiling studies in children 
with septic shock have corroborated high 
level SLC39A8 expression in nonsurvivors 
relative to survivors (97).

Despite this interesting convergence 
of independent data sources, the safety 
and efficacy of zinc supplementation 
in clinical sepsis remains to be directly 
demonstrated. The pediatric critical 

illness stress-induced immune suppres-
sion (CRISIS) trial tested the efficacy 
of enteral zinc supplementation, along 
with selenium, glutamine, and metoclo-
pramide, as a means of preventing noso-
comial infection or sepsis in critically ill 
children (106). This trial was terminated 
early for futility (http://clinicaltrials.gov; 
NCT00395161). Potential confounders in 
this trial included the testing of multiple 
agents, thus making it difficult to assess 
the effect of any single agent (107, 108), 
and decreased bioavailability of enteral 
zinc (100). Consequently, there is an ac-
tive Phase 1 trial involving intravenous 
zinc supplementation in critically ill chil-
dren (NCT01062009).

In multiple studies involving children 
with septic shock, metalloproteinase-8 
(MMP-8) has consistently been the high-
est expressed gene in patients with septic 
shock, relative to normal controls (93-97, 
109, 110). MMP-8 is also more highly ex-
pressed in patients with septic shock com-
pared to patients with sepsis, and in septic 
shock nonsurvivors compared to septic 
shock survivors (111). While MMP-8 is 
best known as a neutrophil-derived pro-
tease that cleaves extracellular matrix col-
lagen, MMP-8 has other cellular sources 
and nonextracellular matrix substrates 
(112). The discovery of high level MMP-8 
expression in clinical septic shock has led 
to the formal study of MMP-8 in experi-
mental sepsis. These studies demonstrated 
that pharmacologic inhibition of MMP-8, 
or genetic ablation of MMP-8, confers a 
significant survival advantage in a murine 
model of sepsis (111). Collectively, these 
studies identify MMP-8 as a novel, candi-
date therapeutic target in sepsis, and this 
assertion is particularly intriguing given 
the existence of drugs to inhibit MMP-8 
activity in the clinical setting (113).

Triggering receptor expressed on my-
eloid cells-1 is critical for amplification of 
the inflammatory response to pathogen 

challenge and there is interest in blockade 
of the triggering receptor expressed on 
myeloid cells-1 pathway in sepsis (114). 
A recent gene expression profiling study 
in pediatric septic shock compared four 
distinct developmental age groups (110). 
A primary finding of this study was that 
children in the “neonate” group (0 to 28 
days of age) had widespread repression 
of genes corresponding to the triggering 
receptor expressed on myeloid cells-1 sig-
naling pathway compared to older chil-
dren. The observation that the triggering 
receptor expressed on myeloid cells-1 
pathway may not be particularly active in 
neonates with sepsis illustrates how some 
candidate therapeutic strategies may not 
have a biological basis across all develop-
mental age groups.

Biomarker Discovery. The diagnostic 
approach to the febrile child without an 
obvious source of infection, and distin-
guishing viral from bacterial infection, 
remain important challenges in clinical 
pediatrics (115). Ramilo et al (116) have 
applied gene expression profiling to dif-
ferentiate bacterial vs. viral infection in 
hospitalized febrile children. Specifically, 
they have reported expression signatures 
that can distinguish Influenza A infection 
from bacterial infection, and Escherichia 
coli infection from Staphylococcus aureus 
infection. In a conceptually analogous 
study, Allantaz et al (117) reported a gene 
expression signature that differentiates 
children with systemic onset juvenile id-
iopathic arthritis (e.g., “sterile inflamma-
tion”) from children with acute bacterial 
or viral systemic infections. These data 
provide a foundation to better address an 
important problem in clinical pediatrics.

Another area of interest for sepsis-
related biomarker discovery involves out-
come biomarkers (118–120). Expression 
profiling experiments in children with 
septic shock identified IL-8 as a differen-
tially regulated gene between survivors 
and nonsurvivors, and this observation 
was validated by serum IL-8 protein mea-
surements (97). A subsequent study tested 
the ability of serum IL-8 levels, measured 
within 24 hrs of admission to the pedi-
atric intensive care unit, to predict sur-
vival/nonsurvival in pediatric septic shock 
(121). Using separate derivation and vali-
dation cohorts, this study demonstrated 
that serum IL-8 measurements could 
predict a 95% probability of survival with 
standard care. Interestingly, IL-8 was not 
able to predict survival with this degree 
of robustness in a cohort of adults with 
septic shock (122). It has been proposed 

Figure 1.  Schematic illustrating the discovery-oriented and hypothesis-generating approach of whole-
genome expression profiling. The potential deliverables of expression profiling data include the discov-
ery of novel pathways and therapeutic targets, biomarker discovery, and expression-based subclassifica-
tion of patients with septic shock.
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that serum IL-8 levels can be used to ex-
clude children from future interventional 
clinical trials as a means of improving the 
risk-to-benefit ratio of a given therapy 
(121). Using a similar approach, Nowak et 
al (123) identified chemokine ligand (C-C 
motif) ligand 4 as an outcome biomarker 
in pediatric septic shock, but this observa-
tion remains to be validated.

Currently, there is an ongoing effort to 
derive and validate a multibiomarker sep-
sis outcome risk model in pediatric septic 
shock. The foundation of this effort is the 
unbiased selection of a panel of candidate 
outcome biomarkers using microarray 
data from a large cohort of children with 
septic shock (118, 124).

Gene Expression-Based Septic Shock 
Subclasses. Viewing septic shock as a 
heterogeneous syndrome implies the ex-
istence of “disease subclasses,” analogous 
to the oncology field (119, 120). Recent 
studies reported pediatric septic shock 
subclasses based exclusively on genome-
wide expression profiles. In the initial 
study, three subclasses of children with 
septic shock (subclasses “A,” “B,” and 
“C”) were identified using a computer 
algorithm (unsupervised hierarchical 
clustering) that groups patients based 
on statistically similar patterns of gene 
expression, with no a priori knowledge 
of the clinical phenotype (96). Post-hoc 
analysis of the clinical subclass pheno-
types revealed that subclass A patients 
had a significantly higher level of illness 
severity, including mortality.

Recognizing that standard genomic 
data outputs are not clinically intuitive, a 
subsequent study explored the feasibility 
of bringing expression-based subclassifi-
cation closer to the bedside. The subclass-
defining gene expression patterns were 
distilled to a 100 gene-expression signa-
ture and depicted using visually intui-
tive gene expression mosaics (125–127). 
Clinicians, without any bioinformatics 
training, were able to reliably allocate 
patients to the correct subclasses with 
a high degree of sensitivity and specific-
ity. In a follow-up study, the 100 gene-
expression signature and the expression 
mosaics were used to classify a separate 
validation cohort, and again, the subclass 
A patients were characterized by higher 
illness severity (128). Thus, gene expres-
sion-based subclassification of pediatric 
septic shock is feasible and clinically rel-
evant. The assertion of clinical relevance 
is further substantiated given that the 100 
class-defining genes correspond to adap-
tive immunity, glucocorticoid receptor 

signaling, and peroxisome proliferator ac-
tivated receptor- signaling (128).

Epigenetics

Epigenetics refers to heritable changes 
in gene expression that are not related 
to direct DNA sequence changes (129). 
The epigenetic mechanisms dictating 
increased or decreased gene expression 
include chemical modifications of DNA 
and posttranslational modifications of 
histones. A key concept of epigenetics is 
that the epigenetic modifications can be 
“inherited” (i.e., passed on to daughter 
cells) and can therefore lead to long-last-
ing effects on gene expression.

Immunity- and inflammation-related 
genes are subject to epigenetic regulation 
(130–137), and experimental data indicate 
that sepsis induces epigenetic changes in 
dendritic cells and lymphocytes, render-
ing the host immune deficient for a long 
period after the initial sepsis challenge 
(138–140). In children with septic shock, 
there is evidence of differential expression 
of genes involved in epigenetic regula-
tion, in parallel with suppression of adap-
tive immunity genes (109).

Patients that recover from critical 
illness, sepsis in particular, are at in-
creased risk of death for several years 
after discharge (5, 141, 142). Czaja et al 
(5) recently studied over 7,000 pediatric 
severe sepsis cases. Almost one half of 
the patients that were discharged after 
the initial admission were readmitted at 
least once, at a median of 3 months after 
discharge. Respiratory infection was the 
most common indication for readmission, 
and >30% of these readmissions were in 
children without comorbidities. An addi-
tional 6.5% of patients died during these 
readmissions. While the cause of these 
late deaths and the high rate of readmis-
sion are likely to be multifactorial, it is 
tempting to speculate on a potential role 
for epigenetic mechanisms involving the 
immune system.

CONCLUSIONS

Genetic/genomic approaches to pedi-
atric septic shock have proliferated over 
the last decade. While novel information 
has been derived from these studies, it 
must be kept in mind that none of these 
data have been directly translated to the 
bedside of the critically ill child, yet. 
Meeting the lofty goal of clinical transla-
tion will require multi-investigator col-
laborations and further rigorous studies 

with an emphasis on independent valida-
tion. The potential deliverables of clinical 
translation include robust and clinically 
effective patient stratification strategies, 
and novel therapies, which will enhance, 
rather than replace, our current clinical 
protocols and guidelines.
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